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In-person, Video Conference, or Audio Conference? 

Examining Individual and Dyadic Information Processing 

As a Function of Communication System 

Supplementary Section 1  

– The Dynamical Interpersonal Communication Systems Model 

Table S1 

Interpersonal Communication Systems 

Interpersonal 

Communication 

Systems (ICS) 

Encoding 

System Involved 

in ICS 

Examples of 

ICS 

Same 

Location 

Types of 

Directly 

Perceivable  

Information  

Amount of 

Directly 

Perceivable  

Information 

Evolved Evolved 

Symbolic 

In-person 

Conference 

Yes Visual 

Auditory 

High 

Representational  

Representational 

Symbolic 

Audio/Video 

Conference 

No Visual 

Auditory 

Medium High 

 Audio 

Conference 

No Auditory Medium Low 

Symbolic Symbolic Messaging No Pictorial  Low 

Note. All communication systems involve the use of language which is encoded symbolically. 

Figure S1 

Systems Nested Within Interpersonal Communication  

 
Note. The figure illustrates the systems nested within a specific interpersonal communication system. 

The slower systems restrict the faster ones, while the faster ones also influence the slower ones. The 

figure was adapted from Eiler et al. (2013). 
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Supplementary Section 2 – Physiological Data Preparation and Calculation 

Physiological Data Preparation  

Participants were instructed to place three pre-gelled disposable ECG electrodes on their 

bodies using the three-lead system. To allow participants’ arms to move freely (e.g., 

gestures), two electrodes were placed just below the collarbones and the other on the waist. 

Prior to attaching the electrodes, participants were instructed to clean the designated skin 

areas using an alcohol pad. To ensure privacy, the experimenters left the lab during the ECG 

preparation process, and for the dyads in the in-person condition, separate spaces were 

provided for each individual if necessary.  

After attaching the ECG electrodes, the experimenters returned to the lab and began 

preparations for the EMG and EDA electrodes. For the facial EMG signals, the skin areas 

were first wiped using a paper towel dampened with distilled water, lightly abraded with an 

exfoliating abrasion pad, and a small amount of conductive gel was applied to improve the 

conductivity of the signal. Two reusable 4 mm Ag/AgCl electrodes filled with an isotonic gel 

were placed just above the left eyebrow to measure corrugator supercilii muscle activity, and 

two same electrodes were attached to the skin under the left lower eyelid for orbicularis oculi 

data recording. To ensure the inter-electrode impedances of the facial EMG signals were 

within an acceptable range, a CheckTrode electrode impedance meter was used, with a mean 

impedance of 12.66 kΩ across all participants. For the EDA preparation, the skin was cleaned 

using a paper towel dampened with distilled water. Two pre-gelled disposable EDA 

electrodes were attached to the inner arch of the left foot. To ensure data quality, the 

experimenters carefully monitored all physiological signals during recording. All 

physiological signals were recorded with BIOPAC MP150 systems at a sampling rate of 

2,000Hz. The physiological data preparation procedures were also detailed in Han (2020) and 

Han et al. (2022).  

Note, the placement of ECG and EDA was intentionally selected to allow for free 

movement of the upper body, in order to enhance the ecological validity of this study. 

Nonetheless, it is possible that different communication conditions may be affected 

differently by the invasive equipment. Specifically, the audio-only condition may have been 

less influenced because participants could not see the sensors on their partner, thereby not 

being constantly reminded of these devices. On the other hand, participants in visual-based 

communication might have been periodically reminded, possibly affecting their 

communication behavior. Researchers could consider some wearable (and thus smaller) 

devices such as the Apple Watch for heart rate, which might be less noticeable, and try to 

replicate some findings of this study. In addition, future research can collect naturalistic 

conversation recordings and examine facial expressions using facial recognition software 

(which is less invasive) to identify and analyze real-time facial expressions to understand 

emotional processes involved in interpersonal communication (though facial recognition 

software cannot detect non-visible activities). These two methodologies may remove the 

impact of invasive equipment on the processes we studied in the paper. Nonetheless, it should 

be noted that as of now there are no wearable devices or facial recognition tools that can 

match the accuracy of the physiological measurements we employed in the study. 

Physiological Data Frequency  

The pre-processed data, obtained from the previous study, had varying frequencies, 

including 5Hz RSA, 1Hz EDA, and 10Hz fEMG. The reasons why different frequencies were 

extracted for different signals are as follows. First, 5Hz RSA time series were created using 
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the dynamic RSA method developed by Abney et al. (2021). Parameters proposed by Abney 

et al. including the 5Hz frequency were followed to best preserve the dynamics of RSA as 

tested by Abney et al. (2021). Second, for EDA, because EDA runs on a second-based scale, 

1Hz of skin conductance data was obtained as the result of the pre-processing process (see 

Han et al., 2022). Lastly, facial EMG data were initially exported with two data sets, a 1Hz 

dataset and a 10Hz dataset. Nevertheless, the 1Hz data set contained many files with 

inaccurate data from AcqKnowledge, which resulted from an error during the batch process. 

Therefore, 10Hz data were used for the present study.  

RSA Calculation 

First, inter-beat intervals (IBIs) were extracted from ECG signal using AcqKnowledge 

5.1. The software’s script was used to automatically identify each R peak from the QRS 

complex. Trained research assistants then visually reviewed the data and corrected any 

incorrectly labeled R-peaks. The time between two adjacent R peaks was calculated as the 

inter-beat interval.  

Second, following the method outlined by Abney et al. (2021), the IBI time series was 

resampled to create a time-based 5Hz IBI time series. This time-based time series allows for 

real-time matching of the RSA data with behavioral data. The remaining steps in the RSA 

calculation were carried out using the Porges-Bohrer method as described in Abney et al. 

(2021), including a final transformation step that takes a natural logarithm of RSA values to 

ensure a normal distribution (Porges, 1985; Riniolo & Porges, 2000). It should be noted that 

to match the RSA time series with behavioral data, the data stretching step involved in Abney 

et al.’s method was omitted in this study, with the agreement of Abney and his team. 

Facial EMG Data Calculation 

Facial EMG data were pre-processed following the guidelines provided by BIOPAC. 

Specifically, a spectral analysis was applied to identify any 60Hz noise present in the data, 

and if yes, a 60Hz comb band filter was used to remove this noise. After that, EMG data were 

run through a 28-500Hz bandpass filter and then rectified and integrated (Read, 2020). 

Finally, 10Hz data were extracted from the AcqKnowledge software as per the previous 

study, from which the data for this study was obtained.  

EDA Data Calculation 

Please see the detailed procedures described in Han et al. (2022). 

 

Supplementary Section 3 – Participants and Lab Setting 

Participants Information 

Most participants identified themselves as being White (n = 100, 66.67%), followed by 

Asian (n = 19, 12.67%), more than one race (n = 6, 4.00%), Black or African Americans (n = 

4, 2.67%), and Native Hawaiian or other Pacific Islanders (n = 1, 0.67%). Four participants 

preferred not to answer the racial identity question. The race identity of 16 participants was 

not collected due to technical failure. 

Lab Setting 

Dyads were seated in front of a big television screen where a static basketball image was 

presented. For the video and audio conference groups, dyads were guided to two separate 

rooms with the same setting as the in-person condition. Cameras for the video conference 

group were placed on the participants’ laptop which was placed on a small coffee table next 

to participants. Participants were not allowed to adjust the settings, and in, fact none of them 
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had the intention to do so.   

Figure S2 below illustrates the lab setting used for this study. The in-person 

communication condition involved two conversants sitting in the same room and engaging in 

an unstructured conversation for a duration of two minutes. The audio/video and audio-only 

communication conditions, on the other hand, required participants to be in different rooms 

and engage in their conversation using a video or audio conference tool. In audio/video 

communication, participants were able to perceive visual cues of their conversing partner, 

while the audio-only condition did not provide any visual information. 

Figure S2 

Lab Setting 

 

 

Supplementary Section 4 – Data Description 

Missing Data 

Four dyads’ data were missing (one in the in-person condition and two in the audio 

conference condition) due to the failure of participants to execute the conversation (during 

which they thought they should keep silent). For RSA, one additional dyad’s data in the video 

conferencing condition was deleted because data for their silence phase were missing, which 

is needed for calculating the tonic resting RSA level in the analysis. For EDA, eight dyads’ 

data were very noisy and thus removed. For fEMG data, one participant’s data were deleted 

because the AcqKnowledge 5.0.1 failed to rectify the filtered data. Data distribution for the 

communication conditions for each level of analysis is summarized in Table S2 of this 

document. 

Table S2 

Data Distribution for the Three Communication Systems  

 In-person 

Conference 

Video 

Conference 

Audio 

Conference 

Individual level analysis (data unit: individual) 

RSA 54 46 40 

Skin Conductance 44 45 36 

Facial EMG-Corrugator 54 45 41 
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Facial EMG-OO 54 45 41 

Dyadic level analysis (data unit: dyad) 

RSA 27 23 20 

Skin Conductance 22 22 18 

Facial EMG-Corrugator 27 22 20 

Facial EMG-OO 27 22 20 

Supplementary Section 5 – Description of Variables 

Friendship Closeness and Satisfaction 

The strength of the dyads’ friendship was measured with two 7-point scales: one Likert 

scale on psychological closeness (6 items, Vangelisti & Caughlin, 1997) and one semantic 

differential scale (10 items) on relational satisfaction (Huston et al., 1986). Cronbach’s alphas 

for the closeness and satisfaction scales were .88 and .90 respectively.  

Big Five Personality 

The five personality traits including agreeableness, conscientiousness, extroversion, 

emotional stability, and openness to experience, were assessed by the ten-item personality 

inventory (TIPI, Gosling et al., 2003). Agreeableness, as described in the main text, is the 

tendency to cooperate with others. Conscientiousness is the degree of self-discipline and self-

control. Extroversion describes one’s tendency on emotional expressiveness and sociability. 

Openness to experience describes one’s tendency to seek novel experiences and intellectual 

development. Emotional stability, oftentimes called neuroticism, is associated with mood 

swings, anxiety, sadness, etc. TIPI was not developed for traditional reliability measures (see 

the scale developers’ note at https://gosling.psy.utexas.edu/scales-weve-developed/ten-item-

personality-measure-tipi/a-note-on-alpha-reliability-and-factor-structure-in-the-tipi/). 

RSA Introduction 

Respiratory sinus arrhythmia (RSA) refers to a high frequency band (0.12-0.40Hz, 

Porges, 1985) of heart rate variability and has been used to measure the parasympathetic 

influence on the heart, indicative of changes in mental effort, cognitive workload, emotional 

regulation, anxiety, and other psychological processes (Beauchaine, 2001; Porges, 1995). 

RSA reflects the body’s response to environmental challenges by modulating the vagal break 

which controls the metabolic resources required by the body and the environment. 

Specifically, when one gets challenged by their surroundings, either physically, mentally, or 

emotionally, the body needs more metabolic resources to deal with the outside stress in order 

to maintain its homeostasis. To meet the increased metabolic demands, the vagal break is 

released (vagal withdrawal), lowering RSA and activating the sympathetic nervous system, 

which results in a faster heart rate. On the other hand, in a peaceful environment, vagal break 

is maintained for social engagement behaviors, resulting in increased RSA and decreased 

heart rate (Porges, 1991, 1995, 2007). In the context of this study, lower RSA is interpreted 

as indicating more cognitive effort during interpersonal communication. 

Supplementary Section 6 –  

Cross Recurrence Quantification Analysis (CRQA) 

Parameters 

To calculate synchrony levels using CRQA, several parameters including time lag and 

embedding dimension were determined by the CRQA MATLAB toolbox (Kay & 

Richardson, 2015). Following the same procedures demonstrated in Han et al. (2022), a time 

https://gosling.psy.utexas.edu/scales-weve-developed/ten-item-personality-measure-tipi/a-note-on-alpha-reliability-and-factor-structure-in-the-tipi/
https://gosling.psy.utexas.edu/scales-weve-developed/ten-item-personality-measure-tipi/a-note-on-alpha-reliability-and-factor-structure-in-the-tipi/
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lag of 50, an embedding dimension of 10, and a radius of 8 were used for the 10Hz corrugator 

data, a time lag of 40, an embedding dimension of 10, and a radius of 10 for the 10Hz 

orbicularis oculi, and lastly a time lag of 40, an embedding dimension of 6, and a radius of 25 

for the 5Hz RSA. These parameters were chosen such that most of the %REC fell into the 

preferred 0.5% – 5% range (Richardson et al., 2007; Shockley, 2005). All other parameters 

were the same as those reported by Han et al. (2022), including those for skin conductance.  

Data Demonstration 

        The figures below depict individual data from a single dyad and their corresponding 

recurrence plots derived from CRQA. 

 

Figure S3 

Exemplar Data and CRQA Plots 

(3A) Exemplar Data  

 
 

Note. The four graphs display one dyad’s OO, corrugator, skin conductance, and RSA activity over 

the course of their 2-minute conversation. The RSA plot captures the RSA activity from the 7th to the 

114th second, which is the result of RSA calculation from the original data of inter-beat intervals. Data 

from the beginning and end were lost due to the use of the PolyFilter function (see the RSA 

calculation program from Abney et al., 2021). 
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(3B) Corresponding CRQA Plots  

 

  
    
Note. The graphs above are recurrence plots corresponding to the data presented in Figure S3A. The 

x- and y-axis represent each participant’s timeline. Every orange dot in the plots, known as a 

recurrence point, represents a moment when the two participants shared a similar physiological state. 

The added black line is the main diagonal line of the plot that shows recurrent states at lag0. Orange 

dots distant from the main diagonal line represent recurrence states at increased time lags (e.g., in this 

case, for OO and skin conductance we see more orange dots on the top-left side of the main diagonal 

than on the bottom-right side, suggesting that Person A was a leader on Person B’s physiological 

state). The two dashed lines represent lines that are 5 seconds apart from the main diagonal. The areas 

between the two dashed lines are the synchrony data we captured for analysis, which indicates 

synchrony levels within a range of +/- 5-second lags. More orange dots in this area means a higher 

level of synchrony for this dyad. More explanations of the CRQA calculation can be found in Han et 

al. (2022). 
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Supplementary Section 7 –  

Results Summary of Communication System Effects on Covariates 

Overall Summary 

We examined whether the covariate variables were significantly different across the three 

communication groups at the individual and dyadic levels. Overall, at the individual level, 

only friendship satisfaction and looking-partner behavior (the latter as expected) were 

significantly different across the three communication groups. All other covariate variables 

including talking behavior and relationship closeness were not significantly different across 

the communication groups. At the dyadic level, no significant difference was found regarding 

the distributions of personality traits, friendship, total time of talking, and gaze behavior 

across the three communication conditions.  

Summary for Individual Level Analysis 

A one-way ANOVA revealed that relational satisfaction (F (2, 147) = 3.80, p = .025, ηp
2 

= 0.05, 95% CI [.003, 1.00]) was found to be statistically different across the three 

communication conditions. Specifically, post hoc analysis with Tukey correction showed that 

participants in the video conference group reported significantly higher friendship satisfaction 

(M = 6.35, SD = .59) than those in the in-person communication (M = 5.94, SD = .86, t = 

2.75, p = .018). No other statistically significant differences were found (M = 6.15, SD = .77 

for the audio conference group). 

No significant differences were observed in relation to other individual difference 

variables, including friendship closeness, the Big Five personality traits, and demographic 

characteristics, across the three communication conditions. 

For talking behavior, the results of the multilevel modeling analysis revealed that neither 

the communication condition, time, nor their interaction had any significant effect on 

participants' talking behavior. 

For participants’ gaze behavior, the MLM analysis for both looking-partner and looking-

TV behavior revealed significant main effects of communication condition and time, 

qualified by their interaction effect (see Table S3). In summary, and as expected, the audio 

conference group displayed a lower frequency of directing their gaze to the laptop screen 

(where the audio conference tool was launched and through which their partner’s voice was 

delivered), and a higher frequency of looking at the television than the other two groups. In 

comparison to the in-person group, the video conference group exhibited a higher frequency 

of looking at their partner at the beginning of their conversation. However, this frequency 

decreased over time and eventually resulted in a lower frequency of looking at their partner 

than the in-person group. The in-person group had a consistently high frequency of looking at 

their partner throughout the conversation, and consequently a low frequency of looking at TV 

(see Figure S4a and S4b below). 
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Figure S4 

Frequency Distribution of Looking at Conversing Partner (a) and TV (b) as A Function of 

Communication System and Time 

(a)  (b)  

 

Table S3 

Multilevel Modeling Results of Gaze Behavior 

 

Note. The audio/video communication, or video conference condition, was the base group in the 

model. 

Summary of Dyadic Level Analysis 

For the dyad-difference variables (friendship, personality traits, and gaze and talking 

behaviors), results of chi-square analysis showed that the distribution of those groups (low-

low, high-high, and low-high) was not significantly different across the three communication 
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conditions, for all dyad-difference variables. In other words, the three communication 

conditions were not different in the distribution of friendship, personality traits, and gaze and 

talking behavior at the dyadic level.  

 

Supplementary Section 8 – Post Power and Sensitivity Analyses  

The complexity of multilevel model analyses makes power calculation very challenging. 

As Westfall et al. (2014) demonstrated, the commonly used power calculation tool, G*Power, 

is not appropriate for multilevel models. 

In this study, a priori power analysis for sample size estimation is not possible, as the 

study relied on secondary data analysis. However, a post-hoc power analysis was conducted 

using G*Power to gain insight into the obtained power and the robustness of the results. 

Additionally, sensitivity analysis was also conducted to further understand the robustness of 

the findings. 

For Individual Level 

Because there is limited research on the effect of communication systems on individuals’ 

physiological levels, we used a relatively small effect size in our post-hoc power analysis, 

with a partial η2 of .05. It is important to note that this effect size is much smaller than what 

has been found in some studies examining similar effects on individuals' physiological 

activity. For example, Ravaja (2009) found above-medium effect sizes on three facial EMG 

signals (with partial η2 values of .18 for zygomatic muscle activity, .39 for orbicularis oculi, 

and .14 for corrugator activity) when comparing co-located and non-co-located game players 

during digital game playing. 

We chose a conservative effect size of partial η2 = .05 (equals to effect size Cohen’s f 

= .23), number of measures = 2 (which could be as large as 120 as we had 120 time points 

measured for each physiological signal), and the minimum sample size = 125, in addition to 

other parameters (alpha = .05, number of groups = 3). With the most conservative parameter 

setting, G*Power revealed an achieved power of .98.   

For sensitivity analysis, we entered the same values for the parameters above, but with a 

power of .80. The result revealed an effect size of f = .14. By increasing the number of 

measurements to 15, the effect size f decreases to .08, which corresponds to a partial η2 

of .019.  

For Dyadic Level 

Like the individual level analysis, there is limited research on the effect size of 

communication systems on interpersonal physiological synchrony. Studies examining similar 

effects have revealed above-medium effect sizes per Cohen's suggestion. For example, 

Müller and Lindenberger (2011) examined interpersonal synchrony of respiration and heart 

rate variability among singers in different types of singing conditions including singing with 

eyes open versus eyes closed, and found an average partial η2 of .53, with a range of .20 - .83. 

Moreover, Ham and Tronick (2009) studied mother-infant synchrony in heart rate and RSA 

as a function of face-to-face versus still face interaction. The results revealed an effect size 

greater than what Cohen defined as a large effect. 

Therefore, for post-hoc power analysis, we chose a small effect size of partial η2 = .04, 

corresponding to Cohen’s f = .20, with a minimum sample size of 62 dyads and 2 

measurements (although the actual and smallest number of measurements in the study was 

15, which corresponds to the number of time lags assessed for skin conductance synchrony). 
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G*Power revealed an achieved power of .79 with these parameters. Increasing the effect size 

to partial η2 = .05 (corresponding to f = .23) increases the achieved power to .89. 

Additionally, increasing the number of measures to 15 resulted in an achieved power of .99. 

For sensitivity analysis, we used the same parameters as the above, but set the power 

to .80. This yielded an effect size f of .20, as expected. We also calculated the effect size 

when increasing the number of measurements to 15, with the other parameters remaining the 

same. This resulted in a reduction of the effect size f to .11 (partial η2 = .012). 

Overall, the post power and sensitivity analyses indicate that the study had adequate 

power to detect significant differences among the communication conditions, despite the 

small effect size, sample size, and number of measurements used in the analyses.    

The study’s R code and data can be found at 

https://osf.io/7kaxs/?view_only=1f111aa753bb4bad8893b0fce58482d7. 

 

  

https://osf.io/7kaxs/?view_only=1f111aa753bb4bad8893b0fce58482d7
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Supplementary Section 9 – Results Summary 

Table S4 

Multilevel Modeling Results for Dyadic Level Analysis 

 

Note. REC refers to %REC as the indicator of interpersonal synchrony. OO stands for orbicularis 

oculi, CORR for corrugator activity, RSA for respiratory sinus arrhythmia, and SC for skin 

conductance activity. The number of observations in the models varies due to the different frequencies 

of the data for the four signals, which were explained in Section 2. This led to different numbers of 

time lags for the calculation of lags for OO, CORR, and RSA, which were set to 5 seconds. For SC, 

lags up to 5 seconds were originally calculated and tested with the model. Due to its non-significant 

results and the fact that skin conductance is a slow responding signal, we increased its time lags to 15 

seconds for further examination, but again no significant results were found, as reported above. 
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Table S5 

Multilevel Modeling Results for Individual Level Analysis 

 

Note. OO stands for orbicularis oculi, CORRUGATOR for corrugator activity, RSA for respiratory sinus 

arrhythmia, and SC for skin conductance activity. Data for OO and corrugator activity were multiplied by 

1000 in the analysis. The MLM for skin conductance does not include a nested structure for random effects 

due to convergence issues. Dyad ID was tested for its random effect, with no variance found to be 

explained by the Dyad ID for skin conductance activity, and therefore was not included in the model. 
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Table S6 

Results Summary 

Physiological 

Signal 

Level of 

Analysis 

Visual vs. Non-visual-based 

Comm. (PC1) 

In-person vs. Video 

Comm. (PC2)  

OO Dyad --- PC2 × Lag effect 

(sig. at lag0) 

 Individual --- --- 

 Summary: Embodied visual information (in-person) better synchronized 

individuals’ positive facial expressions than mediated visual information 

(video communication) at lag0. 

Corrugator Dyad PC1 × Lag effect 

(trend difference) 

PC1 × Closeness group effect 

--- 

 

 Individual PC1 main effect --- 

 Summary: Visual information elicited relatively more (or smaller reduction 

from baseline in) corrugator activity and helped better maintain its 

synchrony across longer time lags than the non-visual-based 

communication. 

Skin 

Conductance 

Dyad --- --- 

 Individual PC1 × Time effect 

(trend difference) 

--- 

 Summary: Audio-only communication is better at maintaining individuals’ 

excitement over time than visual-based communication. 

RSA Dyad PC1 × Agreeableness group 

effect 

PC2 × Lag effect 

(trend difference) 

 Individual PC1 × Time effect 

(sig. at the beginning) 

PC2 × Time effect 

(trend difference) 

 Summary: Visual information is less mentally challenging when the 

conversation starts, and embodied visual information (in-person context) 

allows for a consistently lower level of cognitive effort which can also be 

more synchronized across time lags than contexts without embodied visual 

information (video communication). Finally, for dyads made up of people 

who are very agreeable, audio-only communication had stronger 

synchronization in cognitive effort than those in visual-based 

communication. 

Note. “---” refers to no significant effect associated with the tested comparison PC1 or PC2.  
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Figure S5 

Raw Physiological Activities by Communication Systems (Individual Level) 

(1) (2)  

(3) (4)  

 

Supplementary Section 10 – Analyses of Speech Content and Turn Taking  

 

We conducted additional analyses on speech content and turn taking to better understand 

our results. Specifically, for speech content, we analyzed the emotional dimension of speech 

text to see how it speaks to the current findings from physiology. The reason why the 

emotional dimension was chosen for analysis is that one of the study’s focuses is emotional 

processing, thus analyzing the emotional dimension of speech content may shed light on the 

results found in the study, particularly for the results from OO and corrugator data. 

Specifically, we first transcribed participants’ conversations to text, which produced data for 

66 dyads out of the total 75. Recordings for the rest seven dyads were either unavailable or 

had poor audio quality. For speech content, we used the popular sentiment analysis tool, 

LIWC-22 version (https://www.liwc.app/help/liwc), to extract the affective values of the 

speech content from each turn. Affective variables offered by LIWC-22 include affect, 

positive tone, negative tone, positive emotion, and negative emotion (see data on OSF). Then 

we built multilevel models with Time*Condition as the fixed effects and Dyad_ID as the 

random factor and tested their effect on the five emotional indicators, respectively. Results 

showed no significant differences across the three conditions, either over time or at the 

aggregated level.  

For turn taking, we think it may provide insights into the synchrony results and thus we 

compared turn taking differences across the communication conditions. Specifically, we 

tested differences in the total of turns each dyad took, turn difference, and word count 

difference between two people (which may suggest if there is a dominant role within dyads). 

Likewise, there were no significant findings from the above analyses (all with p > .05, see 

data on OSF).  

https://www.liwc.app/help/liwc
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The contrast between the findings from physiological data and the non-significant 

findings from speech content and turn taking confirm the general consensus that interpersonal 

communication is largely impacted by nonverbal information. For example, interpersonal 

synchronization and the leader-follower structure can be impacted by patterns of facial 

expressions and eye contact but may not be necessarily linked to their speech behavior. 

Further investigations could conduct nonverbal behavioral coding and examine how those 

nonverbal behaviors speak to the physiological results reported in this study.  
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